Energy Systems

3 Body Energy Systems

- Phosphagen
- Anaerobic Glycolysis
- Aerobic

37°
There are 3 energy systems within the body that provide energy to the working muscles. These are:

- **ATP-PC**
- **Anaerobic Glycolysis**
- **Aerobic**

- The **ATP-PC** system breaks down Phosphocreatine (PC) to rebuild ATP.

- The anaerobic glycolysis system only breaks down **carbohydrates** to rebuild ATP.

- The aerobic system can break a range of fuels to rebuild ATP: **fats, carbohydrates and proteins** if required.
• **Adenosine Triphosphate (ATP)**

• Provides energy for every function that occurs in the human body
• Is constantly being broken down to release chemical energy that is then transformed into mechanical energy used for movement.
• Individuals have **limited supply of ATP**, in fact, we only have sufficient supply to produce energy for **approx. 2 seconds** unless resynthesis of this molecule occurs.

• **ATP** can be **resynthesised** or rebuilt by;
 - The breakdown of PC
 - The break down of any of the three food fuels, being Carbohydrates, Fats & proteins.
The body will use different **food fuels** and **energy systems** depending on **intensity and duration** of the activity, as well as the availability and restoration of fuels.

- **At rest:** The body uses more fats than carbohydrates

- **Maximal efforts:** Carbohydrates are used almost exclusively

- **Prolonged activities:** Carbohydrates are again preferred.
The **three systems** do not function independently or one at a time, but work together via the process of **interplay** to supply energy and rebuild ATP.

- All three energy systems are activated at the start of exercise and their relative contribution is essentially **determined by the intensity** and **duration** of the exercise.
- Factors affecting which energy system operates during exercise depends upon:
 - **Duration**
 - **Intensity**
 - **Whether or not oxygen is present**
 - **The depletion of chemical and food fuels during exercise**

- *So, at any one time during activity, one system will be providing more ATP than the other two energy systems i.e. dominant*
Energy system *interplay* refers to all 3 energy systems *co-contributing to ATP production* with one producing the bulk of ATP = *dominant/predominant system.*
The following diagram shows the **dominant** energy systems used for activities of varying **duration** and **intensity**.

<table>
<thead>
<tr>
<th>Intensity</th>
<th>Total event duration</th>
<th>Dominant energy system</th>
<th>Food and/or chemical fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>n/a</td>
<td>Aerobic</td>
<td>Glucose and FFAs</td>
</tr>
<tr>
<td>Submaximal</td>
<td>30 seconds</td>
<td>Aerobic</td>
<td>Glucose and FFAs</td>
</tr>
<tr>
<td>Submaximal</td>
<td>30 minutes</td>
<td>Aerobic</td>
<td>CHO</td>
</tr>
<tr>
<td>Submaximal</td>
<td>3+ hours</td>
<td>Aerobic</td>
<td>FFAs</td>
</tr>
<tr>
<td>Maximal</td>
<td>1–3 seconds</td>
<td>ATP–PC</td>
<td>Stored ATP</td>
</tr>
<tr>
<td>Maximal</td>
<td>5 seconds</td>
<td>ATP–PC</td>
<td>Remaining stored ATP–PC</td>
</tr>
<tr>
<td>Maximal</td>
<td>30 seconds</td>
<td>Anaerobic glycolysis</td>
<td>CHO</td>
</tr>
<tr>
<td>Maximal</td>
<td>75 seconds</td>
<td>50% ATP–PC and lactic acid, 50% aerobic</td>
<td>CHO</td>
</tr>
</tbody>
</table>
ATP-PC System

Is an **anaerobic energy system**; that is, it does not depend on oxygen being transported to working muscles to release energy.

Provides the most rapidly available source of ATP for energy
- depends on simple, short chemical reactions and the ready availability of PC in muscles.

Is limited by the amount of PC stored in the muscles
- The more intense the activity, the more quickly PC is utilised to produce ATP.

Uses stored PC which lasts for up to 15 seconds at maximal intensity, with larger muscles capable of storing slightly more than smaller muscles (12 to 14 seconds).
- When the PC stores are **40 to 50%** depleted (*after about 5 seconds at maximal intensity*), the anaerobic glycolysis system becomes the major producer of ATP.

Can only be replenished through the aerobic pathway *during recovery*, once the activity has stopped.
Anaerobic Glycolysis System

Supplies ATP at a slower rate than the ATP–PC system because it requires longer and more complicated chemical reactions.

Produces lactic acid which can be broken down (without oxygen) to glycogen to provide energy (ATP). Hence it is called the anaerobic glycolysis or lactic acid system.

Supplies energy from the start of intense exercise.
- Peaks *between 5 and 15 seconds*
- Continues to contribute to ATP production until it fatigues, after *2 to 3 minutes*.

Provides twice as much energy for ATP resynthesis as the PC system.
- Increases its ATP contribution when *intensity* exceeds the lactate inflection point.
- During *maximal exercise*, the rate of glycolysis may increase to 100 times the rate at rest.

Provides energy for longer during submaximal activities when PC is depleted and lactic acid accumulation is slower.
The anaerobic glycolysis system & aerobic system comparison when considering carbohydrates (CHO) as a fuel source

Aerobic glycolysis:
- Glycogen → Glucose → ATP → Pyruvic acid → Sufficient oxygen → CO₂ + H₂O + ATP

Anaerobic glycolysis:
- Glycogen → Glucose → ATP → Pyruvic acid → Insufficient oxygen → Lactic acid = lactate + H⁺ then more ATP released

Same process up until the availability/unavailability of oxygen.

Lactic acid (C₃H₆O₃) → Lactate (C₃H₅O₃⁻)
The Aerobic System

Produce ATP at the slowest rate compared to the anaerobic systems. It involves more complex chemical reactions than the ATP–PC and anaerobic glycolysis systems.

- **Provides 30 to 50 times as much ATP as both anaerobic energy systems combined**
- **Requires oxygen**, which can be provided (90% VO2max) within 60 seconds.
- **Preferentially breaks down carbohydrates** rather than fats to release energy.
- **Can produce more ATP by using fats compared to carbohydrates**, but they require more oxygen to produce an equivalent amount of ATP.
- **Does not release toxic or fatiguing by-products** and can be used indefinitely.
- **Is also activated at the start of intense exercise.** Peak power from this system is usually reached between 1 and 2 minutes and will continue to be the major ATP contributor as the anaerobic glycolysis system decreases its contribution.
Energy Systems

<table>
<thead>
<tr>
<th>Energy system</th>
<th>Fuel used</th>
<th>Rate of ATP (energy) production</th>
<th>Total amount of ATP (energy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP-PC system</td>
<td>Phosphocreatine (PC) or creatine phosphate (CP)</td>
<td>Fastest</td>
<td>0.7–1.0</td>
</tr>
<tr>
<td>Anaerobic glycolysis or lactic acid (LA) system</td>
<td>Glucose</td>
<td>Fast</td>
<td>2–3</td>
</tr>
<tr>
<td>Aerobic system</td>
<td>Aerobic glycolysis</td>
<td>Moderate</td>
<td>36–38</td>
</tr>
<tr>
<td></td>
<td>Aerobic lipolysis</td>
<td>Slowest</td>
<td>147</td>
</tr>
</tbody>
</table>

The **rate** of an energy system refers to how fast it produces ATP.

The **capacity** of an energy system refers to how much ATP it can produce — referred to as amount or yield.
The following charts show an AFL player’s energy system contribution at the 5 and 20 second stage of a passage of play consisting of high intensity efforts such as sprints.

Energy system contribution to a 5 second maximal effort in AFL

- Aerobic: 2%
- Stored ATP: 15%
- Anaerobic Glycolysis: 29%
- PC: 54%

Energy system contribution to a 20 second maximal passage of play in AFL

- Aerobic: 2%
- Stored ATP: 21%
- PC: 31%
- Anaerobic Glycolysis: 46%

Notice the change in energy system contribution as the effort continues!
• The *interchange system* is being used increasingly by coaches to “*rest*” players and enable them to rebuild/resynthesize PC before taking to the field for more high intensity efforts.

• *Gary Ablett* often rates amongst the highest possession getters in the AFL and is regularly rested on the bench for short periods of time.